Building Reusable Pipeline Components

This is a four part series on building reusable Pipeline Components for BizTalk (2004/2006). The four part series starts of with laying a foundation with a couple of base classes and the other three installments will cover one component each. The following components will be discussed.
· Static Message Context Component
A Pipeline Component that can add statically configured properties to a message (context).

· Outbound File Location Component
A Pipeline Component that can create sub folders in an Outbound Transport Location based on message (context) properties or literal expressions.

· Build SourceFileName Component
A Pipeline Component that can set the value for the %SourceFileName% macro used in Send Ports. This is a convenient way to custom-name the output files.

The Pipeline Components use a collection of configured properties that are configured during design-time in the (BizTalk) Pipeline Designer. Once the Pipeline is deployed no configured properties can be added or removed but the values of the existing properties can be changed.

A quick analysis of the three components shows us that we see 2 common needs here: (1) we can probably make a base class for each Pipeline Component to derive from and (2) all components use (some sort of) configurable Context Properties to build some internal state.
The following class diagram shows the base classes:
[class diagram: base classes]

The PipelineComponentBase class provides the initial layer of Pipeline Component functionality. It (partially) implements the IBaseComponent, IComponent and IPersistPropertyBag interfaces most commonly found in Pipeline Components. Note that the base class does not declare any (class) attributes for registering Pipeline Components. These class attributes should be added on the implementation class that (indirectly) derives from the PipelineComponentBase class.

Both the Name and Description properties of the Pipeline Component are abstract: the derived class has to implement them. The class also introduces an abstract ExecuteInternal (template) method that is call from the IComponent.Execute method implementation. This method has the exact same signature as the IComponent.Execute method but is only called if the Enabled property is set to true (default). When Enabled is set to false the incoming message is returned and no operations are performed. This allows you to switch Pipeline Components on and off through configuration - even in production.
The PipelineComponentWithResourceBase class derives from the PipelineComponentBase class and takes an instance of a ResourceManager in its constructor (with an optional name prefix). The ResourceManager instance passed to the constructor can be taken from the Visual Studio generated Settings class. Through a naming convention it looks for resources in the assembly for the Name and Description properties. The class also implements the IComponentUI interface and its Icon property. The implementation of the Icon property fall back to a generic Icon if there is no Component specific Icon resource found.

The naming convention used for the implementation of the Name, Description and Icon properties is: [prefix] + “Component” + PropertyName. For instance a Pipeline Component class that specifies “MyComponent” as prefix would provide the resource key “MyComponentComponentName” with a string value “My Component” to implement the Name property. Note that you must supply the Name and Description property resources. The Icon property resource is optional and defaults to “ComponentIcon”. Use the prefix if you have more than one Pipeline Component in a single assembly.

The ContextPropertyDef class provides a base class for component specific configurable Context Property instances.

I’ve also included the MessageContextBase class in the class diagram. This class provides a basis for implementing Typed Message Context classes like the SystemMessageContext implemented by BizTalk. The Build SourceFileName Component uses the FileAdapterMessageContext (which derives from MessageContextBase) to access the FILE.ReceivedFileName context property.

Static Message Context Component

A Static Message Context is a Pipeline Component that has one or more Context Properties configured and applies them to each message that travels through the Pipeline.

The following class diagram shows the classes of the Static Message Context component
[class diagram: static context]

The StaticMessageContext class derives from PipelineComponentWithResourceBase base class and passes a name prefix and an instance to a ResourceManager in its constructor. The class also overrides the ExecuteInternal method to apply the configured Context Properties to the message being processed. Applying the configured properties is simply a matter of iterating over the configured properties and writing or promoting them to the message context of the current message being processed.

Both the Load and the Save methods are overridden to manage the configured properties persistence. Four values per configured property are maintained (Key, Namespace, Value and Promote) and an extra count value to indicate the number of configured properties. The StaticMessageContextBagNames utility class manages the names for each configured property in the persistence bag.

Outbound File Location Component

The Outbound File Location component allows messages to be placed in a sub folder hierarchy based on Context Properties of the Message. 
The following class diagram shows the classes for the OutboundFileLocation component:

[class diagram: OutboundFileLocation]

The OutboundFileLocation class derives from the PipelineComponentWithResourceBase base class and passes a name prefix and an instance to a ResourceManager to its constructor. The override of the ExecuteInternal method uses the SystemMessageContext class to check the OutboundTransportType. If the FILE adapter is not used, the component does not perform any operation and simply returns the incoming message.

Otherwise the Outbound Transport Location is parsed for a macro (e.g. %SourceFileName%) and the sub path is build retrieving the configured properties values from the current message’s context. Then the base path (configured in the Send Port), the sub path and the macro are combined and assigned to the Outbound Transport Location context property of the message.

Both the Load and Save methods are overridden to manage persistence of the configured properties. Three values are maintained for each configured property (Key, Namespace and IsLiteral) and an extra count value to indicate the number of configured properties.
The OutboundFileLocationBagNames utility class manages the names for each configured property in the persistence bag.

Build SourceFileName Component

The Build SourceFileName component builds a value for the %SourceFileName% macro that can be used as part of a Send Port Url thus allowing customization of the file names.

The following class diagram shows the classes for the BuildSourceFileName component:

[class diagram: BuildSourceFileName]

The BuildSourceFileName class derives from the PipelineComponentWithResourceBase base class and passes a name prefix and an instance to a ResourceManager to its constructor. The override of the ExecuteInternal method concatenates all the literal or context property values into one string and uses the FileAdapterMessageContext class to set the FILE.ReceivedFileName context property of the message. This context property is used as a value for the %SourceFileName% macro.
Both the Load and Save methods are overridden to manage persistence of the configured properties. Three values are maintained for each configured property (Key, Namespace and IsLiteral) and an extra count value to indicate the number of configured properties.

The BuildSourceFileNameBagNames utility class manages the names for each configured property in the persistence bag.

